
DIAGNOSTYKA, Vol. 16, No. 1 (2015)  
MENDROK, Force identification with use of spatial filter based on ODS 

 

23

 
 

FORCE IDENTIFICATION WITH USE OF SPATIAL FILTER BASED ON ODS  
 

Krzysztof MENDROK 
 

AGH University of Science and Technology, Department of Robotics and Mechatronics,  
al. Mickiewicza 30, 30-059 Krakow, Poland, e-mail: mendrok@agh.edu.pl  

 
Summary 

In last few decades it can be observed that there is a significant growth of the interest in the 
structural health monitoring (SHM) systems development and applications. Unfortunately many 
authors focuses only on the damage detection and other activities related with diagnosis of fault. 
Meanwhile, classical SHM system by definition should have in addition to a diagnostic module 
also module for load monitoring. This load can be measured, but easier and cheaper is to identify it 
from the measured response of the object. Often it is the only practical possibility to monitor the 
excitation. The paper presents a trial to apply a spatial filter based on operational deflection shapes 
(ODS) to force identification. The idea of spatial filter will be shown together with the method of 
force reconstruction. The simulation verification and comparison with classical modal filter will be 
also provided. 
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IDENTYFIKACJA SIŁY Z ZASTOSOWANIEM FILTRU PRZESTRZENNEGO OPARTEGO 

NA ODS 
 

Streszczenie 
W kilku ostatnich dziesięcioleciach można zaobserwować znaczny wzrost zainteresowania 

budową i zastosowaniami układów monitorowania stanu obiektów (ang. Structural Health 
Monitoring - SHM). Niestety większość autorów skupia się na zagadnieniach wykrywania 
uszkodzeń i innymi czynnościami związanymi z diagnostyką. Tymczasem, klasyczny układ 
monitoringu powinien, z definicji, posiadać poza modułem diagnostycznym również moduł 
odpowiedzialny za monitorowanie obciążeń. Te obciążenia mogą być mierzone, lecz taniej i 
łatwiej jest identyfikować je na podstawie pomiaru odpowiedzi obiektu. Często jest to jedyna 
praktyczna możliwość ich monitorowania. Artykuł przedstawia próbę zastosowania filtru 
przestrzennego opartego na eksploatacyjnych formach drgań (ang. Operational Deflection Shapes - 
ODS) do identyfikacji wymuszeń. Pokazana będzie idea filtru przestrzennego wraz z metodą jego 
aplikacji do rekonstrukcji siły. Zawarta będzie także weryfikacja symulacyjna i porównanie z 
klasycznym filtrem modalnym. 
 

Słowa kluczowe: Identyfikacja sił, filtr przestrzenny, filtr modalny, eksploatacyjne formy drgań 
 
 

1. INTRODUCTION 
 
Structural health monitoring (SHM) is a relatively 
new appearance in science. The first references to 
this subject appeared in world literature in the 1980s. 
SHM is a natural development of non-destructive 
testing (NDT) and condition monitoring (CM). 
According to its definition the SHM is: the 
interdisciplinary field of science leading to the 
provision of, at any moment of the working life of 
the object, a diagnosis of the material integrity of 
successive elements, as well as the state of all 
elements together creating the tested object as a 
whole. This state must stay in the range defined 
during design of the object, although it may change 
as a result of normal usage, environmental effects or 
unexpected events. Thanks to the continuous  
monitoring, which allows an analysis of the 

complete history of the structural health, as well as 
the monitoring of operating conditions (loads), the 
SHM system should also provide a prognosis 
(damage development, remaining work time etc.) 
[1]. As it was mentioned in the abstract, the second 
part of the definition, which says about the 
excitation monitoring is often forgotten. And in 
author opinion it is equally important as damage 
detection in the SHM systems. In Figure 1 the SHM 
system block diagram is presented.  
The presented block diagram depictures that each 
SHM system should be composed of three equally 
important modules:  

− a diagnostics module, 
− a module monitoring operating conditions, 
− a database containing material models and 

damage accumulation models.  
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Fig. 1. Block diagram of SHM system 

 
Last two of the above modules requires the load 
monitoring. Unfortunately measurement of 
operational excitations is sometimes very difficult or 
even impossible. That is why the excitations are 
often monitored on the basis of structure response 
measurement. The actual excitation value is 
reconstructed with use of the inverse problem 
solution. 
One of the method for force identification is the 
application of modal filter. 
 
2. FORCE IDENTIFICATION WITH USE OF 

MODAL FILTER 
 
The modal filter is a tool for extracting the modal 
coordinates of each individual mode from the system 
outputs by mapping the response vector from the 
physical space to the modal space [2]. It is done by 
means of a new modal parameter: reciprocal modal 
vectors. Reciprocal modal vectors should be 
orthogonal with respect to the modal vectors ψr, and 
thanks to this condition, they can be applied to the 
decomposition of the system responses to modal 
coordinates ηr 
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where: φr – the r-th modal vector, λr – the r-th pole 
of the system, {x} – vector of system responses 
(output), {f} – vector of excitation forces (input) 
 
Application of the modal filter to force identification 
proceeds in four major steps [3]: 
1. Transfer the outputs of the system from physical 
coordinates to modal coordinates using modal filters. 
2. Determine the number of uncorrelated system 
inputs based on the weighted modal coordinates. 
3. Locate these unknown inputs. 
4. Calculate the amplitude of these inputs. 

Denoting ( )( )( )*
rrr jj λωλωωη −−  by ( )ωη rˆ  

excitation forces can be calculated from the 
following formula: 
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Or, in matrix form: 
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Note that the dimension of the input vector {f(ω)} is 
defined to be the same as that of the modal vector. 
This is why many of its rows must be zero, except 
those corresponding to the vibration sources. That is, 
the rank of the matrix [F] equals the number of 
uncorrelated input forces. Since [Φ] is a full rank 
matrix, the rank of [Π], which contains the weighted 
modal coordinates should be the same as the rank of 
[F]. As a result the number of vibration sources can 
be determined by inspecting the singular values of 
the matrix [Π].  
The method is quite accurate and gives good 
representation of identified force of random or sine 
wave type [4] but it has the serious disadvantage. 
This drawback is the need for knowledge of the 
modal model to determine the modal filter 
coefficients. Such a model can be obtained by using 
the active modal test, and this is often troublesome 
for objects that cannot be isolated from 
environmental or operational excitation, or are too 
large and rigid that they can be effectively enforced 
(bridges, towers, buildings). It is possible to 
eliminate this disadvantage by the use of a spatial 
filter based on ODS, instead of modal vectors. 
 
3. ODS BASED SPATIAL FILTER 
 

At first, it should be reminded what an ODS is. 
In [5] one can find the following definition: “ODS 
has been defined as the deflection of a structure at a 
particular frequency”. Different types of data can be 
acquired from a measurement, both in time and 
frequency domain for ODSs determination. The 
authors focused on frequency domain data and the 
possible selection included [5]: linear spectra, auto 
power spectra, cross power spectra, FRFs and ODS 
FRFs. 
The formulation of the spatial filter was described in 
[6]. In a classical approach, construction of the 
modal filter requires finding a single vector {ψr}  
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that will be orthogonal to all modal vectors {φk } but 
r-th – {φr}, thus the filtration (performed by 
calculating dot product between the filtering vector 
and data) will cancel out the contribution of all 
modes except the r-th, providing a function of a 
single mode only. Important difference between 
modes and ODSs is that modes are strictly related to 
natural frequency of the structure whereas ODSs are 
defined for any frequency, stating a problem of 
selection of particular vectors that are suitable for 
filter construction. In the presented method, 
similarly to the classic technique mentioned above, 
only these ODSs were taken into account, which 
correspond to the natural frequencies and possibly 
rotational velocity harmonics of an object and they 
will be selected by the method of peak picking. In 
real life application, excitation forces will strongly 
influence system responses, therefore presenting a 
challenge in proper ODSs selection, but in this 
particular case this matter seems to pretty 
straightforward. 
Mathematical criteria needed to be met in order to 
find a proper filtering vector {ψODSr} tuned to extract 
only contribution of mode corresponding to r-th 
ODS is presented by Eq. 1 [2]. However, in this case 
{φODSk } denotes k-th ODS vector. Assuming that 
none of the following vector is zero length, {{ψODSr } 
must be orthogonal to all ODS vectors but {φODSk } 
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Equation (5) can be expanded into a set of equations 
(6), and then be solved with respect to {ψr} in order 
to find a proper filtering vector. 
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At this point it should be stated that the number 

of equations and unknowns determine solvability of 
the system. If there are less equations than 
unknowns, that is, less responses measured than 
ODSs taken, it is impossible to find a vector that 
would be orthogonal to all but one ODS.  Such a 
problem can be overcome by limiting band of a 
spectra taken into consideration to a one, which has 
just as many peaks as response points. This approach 
seems to be relevant especially in real life 
application where physical structures have infinite 
number of DOFs and there is a limited number of 
sensors. In the case presented in this paper ODS 
matrix is square and invertible (providing that ODS 
vectors are linearly independent), therefore only one 
exact solution exists and can be found by solving 
equation (6). 

The spatial filtration is done by multiplication of 
vector {ψODSr}T  by the response spectra matrix, as 
stated in the equation (7). 
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where η(ω) denotes ODS filter output and xi(ω) is 
power spectral density of i-th response point. 
 
 
4. SIMULATION VERIFICAITON OF THE 

SPATIAL FILTER OPERATION 
 
Simulation verification of the described spatial filter 
was shown in [6]. Here the process is repeated but 
on the model used for force identification. For this 
purpose a model of linear, time-invariant, mass-
damper-spring mechanical system was defined, its 
scheme is showed in Figure 1. 
 

 
 

Fig. 1. Model used for simulation 
 
The model consists of five masses interconnected 
with each other using spring (proportional stiffness) 
and damper (proportional damping) elements. The 
physical parameters of the system are gathered in 
Table 1.  
 

Table 1. Physical parameters of the model 
 
Mass 
[kg] 

m1 = 4; m2 = 1; m3 = 3; m4 = 2; m5 = 5;  

Damp. 
coeff.  
[N s / m]

c01 = 3.75; c02 = 2.5; c13 = 1.5;  
c23 = 4.2; c24 = 1.3; c35 = 1.5; c45 = 3.7;  

Stiff. 
coeff.  
[N / m] 

k01 = 20000; k02 = 40000; k13 = 25000; 
k23 = 30000; k24 = 50000; k35 = 40000;  
k45 = 25000;  

 
The output of the system are the displacements of all 
masses. Band noise type excitation force was 

m1 m2 

m3 m4 

m5 
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applied to mass number 3. Selection of wide-band 
input signal reassures that the object under scope is 
well excited and contribution of all modes will be 
seen in the output of the system. In the simulation 
zero initial conditions were specified, Hanning 
window was applied to the output data. The 
eigenvalue problem for this system was solved, 
modal parameters are shown in Table 2. 
 

Table 2. Dynamic properties of examined model 
 

Mode 
no. 

Natural frequency 
[Hz] 

Damping 
coefficient [%] 

1 
2 
3 
4 
5 

    8.3 
   16.5 
   26.6 
   30.2 
   58.6 

    0.27 
    0.53 
    0.91 
    0.58 
    1.15 

 
In this particular case ODS created from Power 

Spectra Densities (PSD) responses was chosen for 
the construction of a spatial filter. Welch estimator 
was utilized to obtain PSD of each output from the 
time displacement vector of each mass. Results of 
the estimation of PSD of the responses are presented 
in Figures 2 in form of waterfall plot. 
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Fig. 2. PSDs of the system output 
 
Thick black lines mark the ODS vectors at 

natural frequencies of the structure. These vectors 
will create an ODS matrix that will be used for the 
construction of the spatial filter. Number of the 
degrees of freedom of the system is equal to the 
number of its modes or natural frequencies, 
therefore the count of ODS vectors chosen will 
match the size of each vector, forming a square ODS 
matrix. 

For the model presented in the beginning of the 
chapter, five filters, tuned to ODS at each natural 
frequency of the system, where constructed and 
applied. The first three outputs of the filters are 
illustrated in Figure 3. 
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Spatial filter output, filer tuned to Mode no. 1 - 8.3946Hz
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Spatial filter output, filer tuned to Mode no. 2 - 16.5214Hz
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Spatial filter output, filer tuned to Mode no. 3 - 26.6141Hz

 
 

Fig. 3. First three outputs of spatial filter 
tuned for ODS corresponding to natural 

frequency of the system 
 

In the output of the filters number 1, 2, 3, 4 a 
single peak at the frequency to which the filter was 
tuned is visible. Some minor residual traces of can 
be spotted in the remaining frequency bands, 
however their amplitude does not affect the general 
image. Isolated single ODS can be easily traced 
revealing changes of in the structure, such as 
damage occurrence. Output of remaining filter 5 is 
quite distorted and can be a reason for disturbance in 
force identification.  

Comparison of filtration results obtained for 
classical modal filter and this new approach was 
presented in [6], and proved its good efficiency. The 
method was also successfully applied for damage 
detection [7]. 
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5. APPLICATION OF SPATIAL FILTER FOR 

FORCE IDENTIFICATION 
 
In the consecutive step the simulation model 
described in the previous chapter was used for force 
identification. For that purpose the force signal was 
applied in the mass no. 3. The responses in form of 
vibration displacements were calculated for all of the 
masses. The excitation force was a sum of random 
noise with zero mean and amplitude 1 and sine wave 
of frequency 21 Hz and amplitude 2. Next the force 
identification algorithm presented in Chapter 2 was 
changed to work for spatial filter based on ODS. The 
modification was simple and can be described by the 
following formulas: 
 

( ) ( ){ }ωψωη xT
rODSr ⋅=   (8) 
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Or, in matrix form: 
 

[ ] [ ] [ ]ΠΦ= +T
ODSF    (10) 

 
Results of force identification obtained with use of 
this algorithm are presented in Figure 4. In Figure 5 
the original spectrum of excitation force signal is 
shown for comparison.  
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Fig. 4. Excitation force identified with use of 
spatial filter based on ODS 

 
It was necessary to place both spectra on separate 
plots, due to the fact that identified force is not 
correctly scaled. The reason for this scaling problem 
is the fact that for the spatial filter described in the 
paper the ODS are used instead of modal vectors. 
The latter one are scaled and thanks to that 
independent of excitation. In other words they give a 
proper amplitude of identified force. The visual 
comparison reveals that the character of identified 
spectrum is well represented. To confirm this 
observation the correlation coefficient was 

calculated. It value amounts: 0.9893 which proves 
the effectiveness of applied method. 
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Fig. 5. Original excitation force 
 
In order to scale the identified signal, it is enough to 
run a simple test with the single sine wave excitation 
of known amplitude. And in the next step identify 
this force with use of the method. Having both 
signals one can calculate the scaling factor as a ratio 
of peaks amplitude of both spectra. Such a procedure 
was applied in the described case. The scaling factor 
amounted 9.01 *10-4. 
 
6. COMAPRISON OF FORCE 

IDENTIFICATION RESULTS OBTAINED 
WITH ODS FILTER AND MODAL FILTER 

 
The last point of simulation verification presented in 
the paper is the comparison with results of force 
identification performed with use of classical modal 
filter. The summary of the identification results is 
shown in Figure 6.  
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Fig. 6. Comparison of identification results 
 

Figure 6 is not very informative, while both methods 
(ODS filter method results were scaled) gave very 
good results. To highlight the differences between 
the methods, the results of subtraction of the 
identified from original force is presented in Figure 
7.  
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Fig. 7. Difference of applied and identified 
force for both methods 

 
Figure 7 shows that ODS filter works very well for 
low frequencies. Up to 30 Hz its performance is 
even better than the modal filter. Above 50 Hz the 
situation is reversed. Especially big inaccuracy is 
visible for the fifth natural frequency. It is caused by 
the low dynamics of the system response for this 
frequencies (see Figure 2). Also the ODS filtration 
results for this filter were the worst. The correlation 
coefficients calculated between original force and 
identification results amount: 1 for the modal filter 
and 0.9893 for the spatial filter based on ODS. 
 
7. SUMMARY 
 
In the paper the force identification algorithm is 
presented. The method is based on the well known 
modal filter method. The novelty is in the fact that 
the modal filter is replaced with the spatial filter 
based on ODS. It gives the significant advantages 
with respect to the classical method. It does not 
require active testing and no modal analysis has to 
be done. The problems that Author faced during the 
simulation verification were: scaling and lower 
accuracy for higher frequencies where dynamics of 
the responses is significantly lower. Apart from 
these, method is much easier for application due to 
the fact that it mainly bases on the operational data. 
There is only one measurement with known 
excitation required (in order to scale results) 
contrary to full modal active test needed for modal 
filter determination. 
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